Python训练营---Day41
DAY 41
简单CNN
知识回顾
- 数据增强
- 卷积神经网络定义的写法
- batch归一化:调整一个批次的分布,常用与图像数据
- 特征图:只有卷积操作输出的才叫特征图
- 调度器:直接修改基础学习率
卷积操作常见流程如下:
1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层
2. Flatten -> Dense (with Dropout,可选) -> Dense (Output)
作业:尝试手动修改下不同的调度器和CNN的结构,观察训练的差异。
import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np # 设置中文字体支持 plt.rcParams["font.family"] = ["SimHei"] plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 # 检查GPU是否可用 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"使用设备: {device}") # 1. 数据预处理 # 训练集:使用多种数据增强方法提高模型泛化能力 train_transform = transforms.Compose([ # 随机裁剪图像,从原图中随机截取32x32大小的区域 transforms.RandomCrop(32, padding=4), # 随机水平翻转图像(概率0.5) transforms.RandomHorizontalFlip(), # 随机颜色抖动:亮度、对比度、饱和度和色调随机变化 transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1), # 随机旋转图像(最大角度15度) transforms.RandomRotation(15), # 将PIL图像或numpy数组转换为张量 transforms.ToTensor(), # 标准化处理:每个通道的均值和标准差,使数据分布更合理 transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ]) # 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原 test_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ]) # 2. 加载CIFAR-10数据集 train_dataset = datasets.CIFAR10( root='./cifar_data', train=True, download=True, transform=train_transform # 使用增强后的预处理 ) test_dataset = datasets.CIFAR10( root='./cifar_data', train=False, transform=test_transform # 测试集不使用增强 ) # 3. 创建数据加载器 batch_size = 64 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # 4. 定义CNN模型的定义(替代原MLP) class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() # 继承父类初始化 # ---------------------- 第一个卷积块 ---------------------- # 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素 self.conv1 = nn.Conv2d( in_channels=3, # 输入通道数(图像的RGB通道) out_channels=32, # 输出通道数(生成32个新特征图) kernel_size=3, # 卷积核尺寸(3x3像素) padding=1 # 边缘填充1像素,保持输出尺寸与输入相同 ) # 批量归一化层:对32个输出通道进行归一化,加速训练 self.bn1 = nn.BatchNorm2d(num_features=32) # ReLU激活函数:引入非线性,公式:max(0, x) self.relu1 = nn.ReLU() # 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) # stride默认等于kernel_size # ---------------------- 第二个卷积块 ---------------------- # 卷积层2:输入32通道(来自conv1的输出),输出64通道 self.conv2 = nn.Conv2d( in_channels=32, # 输入通道数(前一层的输出通道数) out_channels=64, # 输出通道数(特征图数量翻倍) kernel_size=3, # 卷积核尺寸不变 padding=1 # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后) ) self.bn2 = nn.BatchNorm2d(num_features=64) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2) # 尺寸减半:16x16→8x8 # ---------------------- 第三个卷积块 ---------------------- # 卷积层3:输入64通道,输出128通道 self.conv3 = nn.Conv2d( in_channels=64, # 输入通道数(前一层的输出通道数) out_channels=128, # 输出通道数(特征图数量再次翻倍) kernel_size=3, padding=1 # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后) ) self.bn3 = nn.BatchNorm2d(num_features=128) self.relu3 = nn.ReLU() # 复用激活函数对象(节省内存) self.pool3 = nn.MaxPool2d(kernel_size=2) # 尺寸减半:8x8→4x4 # ---------------------- 全连接层(分类器) ---------------------- # 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维 self.fc1 = nn.Linear( in_features=128 * 4 * 4, # 输入维度(卷积层输出的特征数) out_features=512 # 输出维度(隐藏层神经元数) ) # Dropout层:训练时随机丢弃50%神经元,防止过拟合 self.dropout = nn.Dropout(p=0.5) # 输出层:将512维特征映射到10个类别(CIFAR-10的类别数) self.fc2 = nn.Linear(in_features=512, out_features=10) def forward(self, x): # 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸) # ---------- 卷积块1处理 ---------- x = self.conv1(x) # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸) x = self.bn1(x) # 批量归一化,不改变尺寸 x = self.relu1(x) # 激活函数,不改变尺寸 x = self.pool1(x) # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2) # ---------- 卷积块2处理 ---------- x = self.conv2(x) # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸) x = self.bn2(x) x = self.relu2(x) x = self.pool2(x) # 池化后尺寸:[batch_size, 64, 8, 8] # ---------- 卷积块3处理 ---------- x = self.conv3(x) # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸) x = self.bn3(x) x = self.relu3(x) x = self.pool3(x) # 池化后尺寸:[batch_size, 128, 4, 4] # ---------- 展平与全连接层 ---------- # 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048] x = x.view(-1, 128 * 4 * 4) # -1自动计算批量维度,保持批量大小不变 x = self.fc1(x) # 全连接层:2048→512,尺寸变为[batch_size, 512] x = self.relu3(x) # 激活函数(复用relu3,与卷积块3共用) x = self.dropout(x) # Dropout随机丢弃神经元,不改变尺寸 x = self.fc2(x) # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits) return x # 输出未经过Softmax的logits,适用于交叉熵损失函数 # 初始化模型 model = CNN() model = model.to(device) # 将模型移至GPU(如果可用) criterion = nn.CrossEntropyLoss() # 交叉熵损失函数 optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam优化器 # 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。 # 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step() scheduler = optim.lr_scheduler.ReduceLROnPlateau( optimizer, # 指定要控制的优化器(这里是Adam) mode='min', # 监测的指标是"最小化"(如损失函数) patience=3, # 如果连续3个epoch指标没有改善,才降低LR factor=0.5 # 降低LR的比例(新LR = 旧LR × 0.5) ) # 5. 训练模型(记录每个 iteration 的损失) def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs): model.train() # 设置为训练模式 # 记录每个 iteration 的损失 all_iter_losses = [] # 存储所有 batch 的损失 iter_indices = [] # 存储 iteration 序号 # 记录每个 epoch 的准确率和损失 train_acc_history = [] test_acc_history = [] train_loss_history = [] test_loss_history = [] for epoch in range(epochs): running_loss = 0.0 correct = 0 total = 0 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) # 移至GPU optimizer.zero_grad() # 梯度清零 output = model(data) # 前向传播 loss = criterion(output, target) # 计算损失 loss.backward() # 反向传播 optimizer.step() # 更新参数 # 记录当前 iteration 的损失 iter_loss = loss.item() all_iter_losses.append(iter_loss) iter_indices.append(epoch * len(train_loader) + batch_idx + 1) # 统计准确率和损失 running_loss += iter_loss _, predicted = output.max(1) total += target.size(0) correct += predicted.eq(target).sum().item() # 每100个批次打印一次训练信息 if (batch_idx + 1) % 100 == 0: print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} ' f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}') # 计算当前epoch的平均训练损失和准确率 epoch_train_loss = running_loss / len(train_loader) epoch_train_acc = 100. * correct / total train_acc_history.append(epoch_train_acc) train_loss_history.append(epoch_train_loss) # 测试阶段 model.eval() # 设置为评估模式 test_loss = 0 correct_test = 0 total_test = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += criterion(output, target).item() _, predicted = output.max(1) total_test += target.size(0) correct_test += predicted.eq(target).sum().item() epoch_test_loss = test_loss / len(test_loader) epoch_test_acc = 100. * correct_test / total_test test_acc_history.append(epoch_test_acc) test_loss_history.append(epoch_test_loss) # 更新学习率调度器 scheduler.step(epoch_test_loss) print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%') # 绘制所有 iteration 的损失曲线 plot_iter_losses(all_iter_losses, iter_indices) # 绘制每个 epoch 的准确率和损失曲线 plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history) return epoch_test_acc # 返回最终测试准确率 # 6. 绘制每个 iteration 的损失曲线 def plot_iter_losses(losses, indices): plt.figure(figsize=(10, 4)) plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss') plt.xlabel('Iteration(Batch序号)') plt.ylabel('损失值') plt.title('每个 Iteration 的训练损失') plt.legend() plt.grid(True) plt.tight_layout() plt.show() # 7. 绘制每个 epoch 的准确率和损失曲线 def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss): epochs = range(1, len(train_acc) + 1) plt.figure(figsize=(12, 4)) # 绘制准确率曲线 plt.subplot(1, 2, 1) plt.plot(epochs, train_acc, 'b-', label='训练准确率') plt.plot(epochs, test_acc, 'r-', label='测试准确率') plt.xlabel('Epoch') plt.ylabel('准确率 (%)') plt.title('训练和测试准确率') plt.legend() plt.grid(True) # 绘制损失曲线 plt.subplot(1, 2, 2) plt.plot(epochs, train_loss, 'b-', label='训练损失') plt.plot(epochs, test_loss, 'r-', label='测试损失') plt.xlabel('Epoch') plt.ylabel('损失值') plt.title('训练和测试损失') plt.legend() plt.grid(True) plt.tight_layout() plt.show() # 8. 执行训练和测试 epochs = 20 # 增加训练轮次以获得更好效果 print("开始使用CNN训练模型...") final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs) print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%") # # 保存模型 # torch.save(model.state_dict(), 'cifar10_cnn_model.pth') # print("模型已保存为: cifar10_cnn_model.pth")
免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理! 图片声明:本站部分配图来自人工智能系统AI生成,觅知网授权图片,PxHere摄影无版权图库和百度,360,搜狗等多加搜索引擎自动关键词搜索配图,如有侵权的图片,请第一时间联系我们。